mathematics items

TIMSS 1999 MATHEMATICS ITEMS

Released Set for Eighth Grade

- TIMSS 1999

IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade

TIMSS Mathematics Items:

Released Set for Eighth Grade

Overview of TIMSS

timss 1999 represents the continuation of a long series of studies conducted by the International Association for the Evaluation of Educational Achievement (IEA). Since its inception in 1959, the IEA has conducted more than 15 studies of cross-national achievement in the curricular areas of mathematics, science, language, civics, and reading. The Third International Mathematics and Science Study (Timss), conducted in 1995-1996, was the largest and most complex iea study to date, and included both mathematics and science at third and fourth grades, seventh and eighth grades, and the final year of secondary school.

In 1999, Timss again assessed eighth-grade students in both mathematics and science to measure trends in student achievement since 1995. This study was also known as timss-Repeat, or timss-R. The results of timss 1999 were published in two companion volumes, TIMSS 1999 International Mathematics Report (Mullis, Martin, Gonzalez, Gregory, Garden, O’Connor, Chrostowski, and Smith, 2000) and TIMSS 1999 International Science Report (Martin, Mullis, Gonzalez, Gregory, Smith, Chrostowski, Garden, and O'Connor, 2000).
timss 1999 also included a voluntary Benchmarking Study including 13 United States of America states and 14 districts and consortia. The results were published in Mathematics Benchmarking Report TIMSS 1999-Eighth Grade: Achievement for U. S. States and Districts in an International Context (Mullis, Martin, Gonzalez, O’Connor, Chrostowski, Gregory, Garden and Smith, 2001) and Science Benchmarking Report TIMSS 1999-Eighth Grade: Achievement for U. S. States and Districts in an International Context (Martin, Mullis, Gonzalez, O'Connor, Chrostowski, Gregory, Smith and Garden, 2001).

Participants in TIMSS 1999

Of the 42 countries that participated in Timss ${ }^{1}$ at the eighth grade in 1995, 26 availed themselves of the opportunity to measure changes in the achievement of their students by also taking part in 1999 (see Exhibit 1). Twelve additional countries participated in 1999, for a total of 38 countries. Of those taking part in 1999, 19 had also participated in 1995 at the fourth grade. Since fourth-grade students in 1995 were in eighth grade in 1999, these countries can compare their eighth-grade performance with their performance at the fourth grade, as well as with the eighth-grade performance of students in other countries.

[^0]Exhibit 1: Countries Participating in TIMSS 1999 and TIMSS 1995

Country	TIMSS 1999	TIMSS 1995 (Grade 8)	TIMSS 1995 (Grade 4)
Australia	\bullet	\bullet	-
Austria		-	\bullet
Belgium (Flemish)	\bullet	\bullet	
Belgium (French)		\bullet	
Bulgaria	\bullet	\bullet	
Canada	\bullet	\bullet	\bullet
Chile	\bullet		
Chinese Taipei	-		
Colombia		\bullet	
Cyprus	-	-	-
Czech Republic	\bullet	\bullet	\bullet
Denmark		\bullet	
England	\bullet	\bullet	\bullet
Finland	\bullet		
France		\bullet	
Germany		-	
Greece		\bullet	\bullet
Hong Kong, SAR	\bullet	\bullet	-
Hungary	\bullet	\bullet	-
Iceland		\bullet	\bullet
Indonesia	\bullet		
Iran, Islamic Republic	-	-	\bullet
Ireland		\bullet	\bullet
Israel	-	-	-
Italy	\bullet	\bullet	\bullet
Japan	-	\bullet	\bullet
Jordan	\bullet		
Korea, Republic of	\bullet	\bullet	-
Kuwait		\bullet	\bullet
Latvia	\bullet	\bullet	\bullet
Lithuania	\bullet	\bullet	
Macedonia, Republic of of"	-		
Malaysia	-		
Moldova	-		
Morocco	\bullet		
Netherlands	\bullet	\bullet	\bullet
New Zealand	\bullet	\bullet	\bullet
Norway		\bullet	\bullet
Philippines	\bullet		
Portugal		\bullet	\bullet
Romania	\bullet	\bullet	
Russian Federation	\bullet	-	
Scotland		\bullet	\bullet
Singapore	-	\bullet	\bullet
Slovak Republic	-	\bullet	
Slovenia	\bullet	\bullet	\bullet

The TIMSS 1999 Mathematics Test

The timss curriculum framework underlying the timss 1995 mathematics test was developed by groups of mathematics educators with input from the timss National Research Coordinators (nRcs). ${ }^{2}$ The content aspect of the framework represents the subject matter content of school mathematics. The performance expectations aspect of the framework describes, in a nonhierarchical way, the many kinds of performances or behaviors that might be expected of students in school mathematics. Working within the mathematics curriculum framework, mathematics test specifications were developed for timss 1995 that included items representing a wide range of mathematics topics and eliciting a range of skills from the students.

To provide as much information as possible about the nature and scope of the 1995 Timss achievement tests, almost two thirds of the items on the tests were released to the public. The remaining one-third were kept secure as a basis for accurately measuring trends in student achievement from 1995 to 1999. Releasing most of the 1995 items enabled more meaningful reports, both national and international, to be published and also provided information for secondary research. But it also meant that students in the timss 1999 samples may have been exposed to these items, which necessitated the development of new mathematics items for timss 1999.

The major goal of timss 1999 test development was to produce a test that would parallel that of Timss 1995 in overall structure and content. The strategy used involved treating the 1995 items as a representative sample from the "pool" of all possible items within the defined test domain and selecting new items from this "pool" with the same subdomains as the released items from timss 1995. In practice, each released item was evaluated to define its

[^1]subdomain (mathematics or science content, performance expectation, item format, and difficulty level), and a set of potential replacement items from the same subdomain was then created. This method ensured that the final test, comprising the nonreleased and replacement items, covered the same test domain as in timss 1995 .

The tests were developed through an international consensus involving input from experts in mathematics and measurement specialists. ${ }^{3}$ The timss Subject Matter Item Committee, which included distinguished scholars from 10 countries, ensured that the test reflected current thinking and priorities within the field of mathematics. The items underwent an iterative development and review process with one pilot testing effort involving 3^{1} countries. Every effort was made to help ensure that the tests represented the curricula of the participating countries and that the items did not exhibit any bias towards or against particular countries. The final forms of the test were endorsed by the nres of all the participating countries. The resulting test for the timss 1999 students (eighth grade in many countries) contained 162 mathematics items representing a range of mathematics topics and skills.

Approximately one-fourth of the timss items were in the free-response format, which required students to generate and write their own answers. Designed to represent approximately one-third of students' response time, some free-response questions asked for short answers, while others called for extended responses and required students to show their work. The remaining questions used a multiple-choice format. The distribution of items across content areas (as reported in the international reports) and performance expectations, as well as by item format, is presented in Exhibits 2 and 3, respectively. To ensure broad subject matter coverage without overburdening individual students, timss used a rotated design that included both the mathematics and science items. In accordance with the design, the mathematics and science items were assembled in 26 different clusters labeled A through Z. The clusters were assigned to eight different booklets in accordance with the rotated design so that representative samples of students responded to each cluster. ${ }^{4}$ Each student completed one go-minute test booklet containing both mathematics and science items.

Exhibit 2: Distribution of Mathematics Items by Content Reporting Category

Reporting Category	Item Type			Number of Items	Score Points
	Multiple- Choice	Short- Answer	Extended Response		61
Fractions and Number Sense	47	11	3	62	
Measurement	15	4	5	24	26
Data Representation, Analysis and Probability	19	1	1	21	22
Geometry	20	1	-	21	21
Algebra	24	4	7	35	38
Total	125	21	16	162	169

Exhibit 3: Distribution of Mathematics Items by Performance Category

$\left.$| Performance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Category |\quad| Percentage |
| :---: |
| of Items |\quad| Total |
| :---: |
| Number |
| of Items | | Number of |
| :---: |
| Multiple- |
| Choice |
| Items |\quad| Number |
| :---: |
| of Free- |
| Response |
| Items |\quad| Number |
| :---: |
| of Score |
| points | \right\rvert\,

3. Garden, R. A. and Smith, T. A. (2000) "TIMSS Test Development" in M.O. Martin, K. D. Gregory, and S. E. Stemler, eds, TIMSS 1999 Technical Report, Chestnut hill, MA: Boston College
4. The TIMSS test design is documented in Garden, R. A. and Smith, T. A. (2000) "TIMSS Test Development" in M.O. Martin, K. D. Gregory, and S. E. Stemler, eds, TIMSS 1999 Technical Report, Chestnut Hill, MA: Boston College.

Item Release Policy

In accordance with iea policy, timss kept about one-half of the timss 1999 items secure for future use in measuring international trends in mathematics and science achievement. The secure items are in every second cluster, starting with cluster A. All the remaining items, those in every second cluster starting with cluster B, are available for general use. This means that half of the secure items from 1995 are now being released. To facilitate their use, the released timss items for timss 1999 have been replicated in their entirety in this mathematics volume and in the companion science volume. As shown in Exhibit 4, this volume contains 82 mathematics items. To provide a unique identifier for each item, the timss cluster and item number is shown in the black box on the right hand side of each page.

While the purpose of this volume is to encourage the use of timss and timss items, please note the IEA copyright; appropriate references to the IEA and timss should be provided in your use of these items.

Item Documentation and Item Results

The timss tests were prepared in English and translated into 33 additional languages. Each item is reproduced for this volume as it was presented to each of the timss countries. In translating the tests or making adaptations for cultural purposes, every effort was made to ensure that the meaning and difficulty of items did not change. This process required an enormous effort by the national centers, with many checks made along the way. ${ }^{5}$

All of the items in this volume are mathematics items. The science items are provided in a companion volume, TIMSS 1999 Science Items: Released Set for Eighth Grade.

Across the top of each item, there is documentation about the item including the item label, item identification, the classification of the item by content category and performance expectation as well as information about scoring, trend status and international performance. If the item is a two-part item, the documentation for Part A is shown on the first page and the documentation for Part B is shown on the following page.

Key. For multiple-choice items, the key for the correct answer is provided. For free-response questions, the scoring rubrics identifying categories of responses and their codes are shown next to the item. In scoring the timss free-response questions, timss utilized two-digit codes with rubrics specific to each item. The first digit designates the correctness level of the response. The first digit is usually a " 1 " designating a correct response, a " 7 " indicating an incorrect response, or a " 9 " for non-response. Sometimes, however, fully correct responses are differentiated from partially correct responses. In these instances, the fully correct responses are designated by a " 2 " and the partially correct responses by a " 1 ." The second digit, combined with the first digit, represents a diagnostic code used to identify specific types of approaches, strategies, or common errors and misconceptions.

Content Category. The mathematics items were reported according to five content areas.

- Fractions and Number Sense
- Measurement
- Algebra
- Geometry
- Data Representation, Analysis, and Probability

Exhibit 4 indicates which items have been classified into each of the five content areas.

Performance Expectation. Items were classified into the following performance expectations.

- Knowing
- Using Routine Procedures
- Investigating and Problem Solving
- Mathematical Reasoning
- Communicating

5. More details about the translation verification procedures can be found in O'Connor, K. M. and Malak, B. (2000) "Translation and Cultural Adaptation of the TIMSS Instruments", in M.O. Martin, K. D. Gregory, and s. E. Stemler, eds, TIMSS 1999 Technical Report, Chestnut Hill, MA: Boston College.

Percent of Students Responding Correctly. The percent of students responding correctly to the item reflects the international average across the countries participating in timss 1999. That is, first the percentage of students responding correctly to the item was calculated for each country. Next, an average was calculated across the 38 countries. For items using a partial credit scoring scheme, the percentages given are for students responding with fully correct answers.

For More Information About TIMSS

For more details about the timss 1999 results and procedures, please see the following reports:

Martin, M.O., Mullis, I.V.S., Gonzalez, E.J., Gregory, K.D., Smith, T.A., Chrostowski, S.J., Garden, R.A., \& O’Connor, K.M. (2000). TIMSS 1999 International Science Report: Findings from IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: Boston College.

Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., Gregory, K.D., Garden, R.A., O’Connor, K.M., Chrostowski, S.J., \& Smith, T.A. (2000). TIMSS 1999 International Mathematics Report: Findings from IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: Boston College.

Martin, M.O., Gregory, K.D., and Stemler, S.E., eds., (2000), TIMSS I999 Technical Report, Chestnut Hill, MA: Boston College.

Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., O’Connor, K.M., Chrostowski, S.J., Gregory, K. D., Smith, T.A. \& Garden, R. A. (2001). Mathematics Benchmarking Report TIMSS 1999 - Eighth Grade: Achievement for U. S. States and Districts in an International Context. Chestnut Hill, MA: Boston College.

Martin, M.O., Mullis, I.V.S., Gonzalez, E.J., O’Connor, K.M., Chrostowski, S.J., Gregory, K. D., Garden, R. A. \& Smith, T.A. (2001). Science Benchmarking Report TIMSS 1999 - Eighth Grade: Achievement for U. S. States and Districts in an International Context. Chestnut Hill, MA: Boston College.

Exhibit 4: Item Listing by Mathematics Content Area

	Fractions and Number Sense
B08	Calories in portion of food from ratio
B09	Figure showing equivalent fractions
B10	Smallest decimal fraction
D09	Smallest simple fraction
D12	Estimate of point P on number line
F07	Average speed from distance and time
F09	Number between two decimal fractions
F12	Fraction of circle shaded
H08	Figure showing fraction of shaded square
H09	Sum closest to 691 + 208
J12	Division of fractions
J14	Division of decimals
J18	Distance between towns from map
L09	Length of building compared to car
L10	Two hundred six and nine-tenths
L18	Subtraction with three fractions
N11	Number of cars from rounded value

	Fractions and Number Sense (Continued)		Algebra
N14	List of equivalent fractions	B12	Equation representing relationship
N16	Number of marbles in bag	D08	Value of x from equivalent ratios
N17	Amount of paint left	D10	Equation to determine cost of cards
N19	Shade in 3/8 of squares in grid	F11	Find $1 / 3$ of number from relationship
P13	Estimate of total cars in parking lot	H10	Equation from x / y table
P14	Estimate of distance from explosion	H12	Symbolic linear equation of magazines
P15	Fraction of cherries in basket	$J 17$	Missing number in table
P17	Write decimal as fraction	L12	Distance traveled by elevator
R07	Subtraction of decimals to 0.001	L14	Correct equation based on x / y table
R08	Average weight of salt crystals	L15	Values in proportionality table
R13	Subtraction of 4-digit whole numbers	L17	Value of x in mathematical equation
R14	How much money left if spent 5/8	N13	Value of expression substituting $\mathrm{x}=3$
R15	Money from total magazine sales	P09	Expression equivalent to $\mathrm{n} \times \mathrm{n} \times \mathrm{n}$
T02A	Number/fraction of 2 types of boxes	P11	Equivalent expression: $\mathrm{k}+\mathrm{k}+\mathrm{k}+\mathrm{k}+\mathrm{k}$
T02B	Number/fraction of 2 types of boxes	R10	Expression when a,b,c are real
T04	Height of stack from paper thickness	R12	Operations on negative number
V01	Two possibilities for actual height	T01	Total club members: boys and girls
v03	Ratio of nitrate to total fertilizer	V04A	Sequence of figures with circles
		V04B	Sequence of figures with circles
		V04C	Sequence of figures with circles

	Measurement		Data Representation, Analysis and Probability
D11	Units to measure mass of egg	B07	Graph showing greatest increase
F10	Measurement accuracy of ruler	F08	Likely result of fifth coin toss
J10	Area of path around garden	H07	Barchart histogram of travel time
113	Most paces to walk to end of hallway	H11	Defective bulbs from random sample
N15	Angle closest to 45 degrees	$J 13$	Interpretation of pictograph of houses
P08	Ratio of width/perimeter in rectangle	L11	Graph of humidity in room
P12	Length of string pulled straight	N18	Probability of drawing chip
T03	Area of rectangle inside parallelogram	P16	Day/time in table at shown temperature
		R09	Time for pendulum to swing 20 times
	Geometry	V02	Cheaper magazine subscription
B11	Cube from folded 2-dimensional net		
D07	Angles in symmetric polygon		
$J 11$	NOT true for all rectangles		
J15	Two similar triangles		
$J 16$	Point on graph from coordinates		
L16	Measure of angle in quadrilateral		
N12	Position of point on number line		
P10	Length of side from similar triangle		
R11	Right triangles to cover rectangle		

Graph showing greatest increase		B07			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Data Representation, Analysis and Probability Using Complex Procedures
D	1	60	Y		

According to the information in the graph, during which two-month period does the greatest increase in coat sales occur?
A. December - January
B. May-June
C. June - July
D. October - November

Calories in portion of food from ratio	B08					
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Fractions and Number Sense Investigating and Solving Problems	A

If there are 300 calories in 100 g of a certain food, how many calories are there in a 30 g portion of this food?

Figure showing equivalent fractions					
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Fractions and Number Sense	Using Complex Procedures	A	1	58	Y

Which picture shows that $\frac{2}{5}$ is equivalent to $\frac{4}{10}$?
A.

C.

D.

Smallest decimal fraction			B10		
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Fractions and Number Sense	Knowing	E	1	46	Y

Which of these is the smallest number?
A. $\quad 0.625$
B. 0.25
C. 0.375
D. 0.5
E. 0.125

| Cube from folded 2-dimensional net | | B11 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Geometry | Using Complex Procedures | C | 1 | 59 | Y |

| Equation representing relationship | | B12 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Algebra | Knowing | A | 1 | 65 | Y |

n is a number. When n is multiplied by 7 , and 6 is then added, the result is 41 . Which of these equations represents this relation?

A. $7 n+6=41$

B. $7 n \pm 6=41$
C. $7 n \times 6=41$
D. $7(n+6)=41$

Angles in symmetric polygon		D07				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Geometry	Investigating and Solving Problems
C	1	62	Y			

The line m is a line of symmetry for figure $A B C D E$.
The measure of angle $B C D$ is
A. 30°
B. 50°
C. $\quad 60^{\circ}$
D. 70°
E. $\quad 110^{\circ}$

Value of x from equivalent ratios	D08					
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra Using Routine Procedures	C

If the ratio 7 to 13 is the same as the ratio x to 52 , what is the value of x ?
C. $\quad 28$
D. 364

Smallest simple fraction		Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Content Category	Using Complex Procedures	A	1	62	Y	
Fractions and Number Sense			62			

Which of these fractions is smallest?

C. $\frac{1}{3}$
D. $\frac{1}{2}$

Equation to determine cost of cards		D10				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra Knowing	A

The cost, C, of printing greeting cards consists of a fixed charge of 100 cents and a charge of 6 cents for each card printed. Which of these equations can be used to determine the cost of printing n cards?
A. $C=(100+6 n)$ cents
B. $C=(106+n)$ cents
C. $C=(6+100 n)$ cents
D. $C=(106 n)$ cents
E. $\quad C=(600 n)$ cents

Units to measure mass of egg			D11			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Measurement Knowing	C

What units would be best to use to measure the weight (mass) of an egg?
A. centimeters
B. milliliters
C. grams
D. kilograms

| Estimate of point P on number line | | D12 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Knowing | B | 1 | 68 | Y |

What is the best estimate of the number corresponding to P ?
A. 1.1
B. 1.2
C. 1.4
D. 1.5

| Average speed from distance and time | | F07 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Investigating and Solving Problems | B | 1 | 33 | Y |

A runner ran 3000 m in exactly 8 minutes. What was his average speed in meters per second?
$\begin{array}{ll}\text { A. } & 3.75 \\ \text { B. } & 6.25\end{array}$
C. 16.0
D. 37.5
E. $\quad 62.5$

Likely result of fifth coin toss				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Data Representation, Analysis and Probability	Knowing	C	1	57

If a fair coin is tossed, the probability that it will land heads up is $\frac{1}{2}$. In four
successive tosses, a fair coin lands heads up each time. What is likely to happen
when the coin is tossed a fifth time?
A. It is more likely to land tails up than heads up.
B. It is more likely to land heads up than tails up.
C. It is equally likely to land heads up or tails up.
D. More information is needed to answer the question.

Number between two decimal fractions		F09				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Fractions and Number Sense Using Complex Procedures	C

Which of these numbers is between 0.07 and 0.08 ?
A. $\quad 0.00075$
B. 0.0075
C. 0.075
D. 0.75

| Measurement accuracy of ruler | | F10 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Measurement | Knowing | D | 1 | 49 | Y |

Using a centimeter ruler like this one, you can measure accurately to the nearest
A. millimeter
B. half-millimeter
C. centimeter
D. half-centimeter

| Find 1/3 of number from relationship | | F11 | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | ltem
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Algebra | Investigating and Solving Problems | A | 1 | 47 | Y |

If 4 times a number is 48 , what is $\frac{1}{3}$ of the number?
A. 4
B. 8
C. 12
D. 16

| Fraction of circle shaded | | | F12 | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Knowing | C | 1 | 50 | Y |

What fraction of the circle is shaded?
A. Between 0 and $\frac{1}{4}$
B. Between $\frac{1}{4}$ and $\frac{1}{2}$
C. Between $\frac{1}{2}$ and $\frac{3}{4}$
D. Between ${ }_{4}^{3}$ and 1

Barchart histogram of travel time

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Data Representation, Analysis and Probability	Using Complex Procedures	C	1	64

The graph shows the time of travel by pupils from home to school.

How many pupils must travel for MORE than 10 minutes?
$\begin{array}{lr}\text { A. } & 2 \\ \text { B. } & 5 \\ \text { C. } & 7 \\ \text { D. } & 8 \\ \text { E. } & 15\end{array}$

Figure showing fraction of shaded square				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Fractions and Number Sense	Knowing	E	1	68

| Sum closest to $\mathbf{6 9 1} \mathbf{+ 2 0 8}$ | | H09 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Using Complex Procedures | B | 1 | 80 | Y |

The sum $691+208$ is closest to the sum
A. $600+200$
B. $700+200$
C. $700+300$
D. $900+200$

Equation from x/y table		H10			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Algebra	Knowing	D	1	49	Y

The table shows a relation between x and y.

x	2	3	4	5
y	7	10	13	16

Which of these equations expresses this relation?
A. $y=x+5$
B. $y=x \pm 5$
C. $y=\frac{1}{3}(x \pm 1)$
D. $y=3 x+1$

| Defective bulbs from random sample | | H11 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Data Representation, Analysis and
 Probability | Investigating and Solving Problems | C | 1 | 62 | Y |

From a batch of 3000 light bulbs, 100 were selected at random and tested. If 5 of the light bulbs in the sample were found to be defective, about how many defective light bulbs would be expected in the entire batch?
A. 15
B. 60
C. 150
D. 300
E. 600

| Symbolic linear equation of magazines | | H12 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Algebra | Knowing | B | 1 | 72 | Y |

\square represents the number of magazines that Lina reads each week. Which of these represents the total number of magazines that Lina reads in 6 weeks?

D

$+\square$ $\times 6$	Area of path around garden		J10			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995	
Measurement	Investigating and Solving Problems	B	1	42	N	

A rectangular garden that is next to a building has a path around the other three sides, as shown.

What is the area of the path?
A. $\quad 144 \mathrm{~m}^{2}$
B. $\quad 64 \mathrm{~m}^{2}$
C. $\quad 44 \mathrm{~m}^{2}$
D. $\quad 16 \mathrm{~m}^{2}$

| NOT true for all rectangles | | | J11 | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Geometry | Knowing | E | 1 | 54 | N |

Of the following, which is NOT true for all rectangles?
A. The opposite sides are parallel.
B. The opposite sides are equal.
C. All angles are right angles.
D. The diagonals are equal.
E. The diagonals are perpendicular.

Interpretation of pictograph of houses		J13			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Data Representation, Analysis and Probability	Using Complex Procedures	Rubric	1	69	N

The table shows the number of houses on two streets of a town, Konini Street and Rimu Street.

Street	Number of Houses
Konini	30
Rimu	21

The pictograph below represents the number of houses in each street.

How many houses does one \square represent?

Code		Response
		Correct Response
$\mathbf{1 0}$	6 houses	
$\mathbf{7 0}$	Incorrect Response	
$\mathbf{7 1}$	One house	5 houses
$\mathbf{7 9}$	Other incorrect (including crossed out/erased, stray marks, illegible, or off task)	
$\mathbf{9 9}$	Nonresponse	

Answer: \qquad

Division of decimals					J14
Content Category	Performance Expectation	$\begin{array}{\|l} \hline \begin{array}{l} \text { Item } \\ \text { Key } \end{array} \end{array}$	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Fractions and Number Sense	Using Routine Procedures	E	1	39	N

Divide: $0 . 0 0 3 \longdiv { 1 5 . 4 5 }$
A. $\quad 0.515$
B. 5.15
C. 51.5
D. 515
E. 5150

| Two similar triangles | | | J15 | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | lnternational Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Geometry | Knowing | C | 1 | 62 | N |

Point on graph from coordinates		J16			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Geometry

Which point on the graph could have coordinates $(7,16)$?

A. Point P
B. Point Q
C. Point R
D. Point S

Missing number in table			J17		
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Algebra	Using Routine Procedures	A	1		N

The table represents a relation between x and y.

What is the missing number in the table?
A. 9
B. 10
C. 11
D. 12
E. 13

Distance between towns from map		J18				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Fractions and Number Sense Using Complex Procedures	D

On the map, 1 cm represents 10 km on the land.

On the land, about how far apart are the towns Melville and Folley?
A. 5 km
B. 30 km
C. $\quad 40 \mathrm{~km}$
D. 50 km

| Length of building compared to car | | L09 | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Using Complex Procedures | B | 1 | 75 | N |

The car is 3.5 m long. About how long is the building?
A. 18 m
B. 14 m
C. 10 m
D. 4 m

| Two hundred six and nine-tenths | | L10 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | ltem
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Knowing | B | 1 | 65 | N |

Which number is two hundred six and nine-tenths?
A. $\quad 206.09$
B. 206.9
C. $\quad 206.910$
D. 2006.9

Graph of humidity in room				L11		
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Data Representation, Analysis and Probability Using Complex Procedures	c

The graph below shows the humidity in a room as recorded on a certain morning.

On the morning shown in the graph, how many times between $6 \mathrm{a} . \mathrm{m}$. and 12 noon was the humidity exactly 20 percent?
A. One
B. Two
C. Three
D. Four

| Distance traveled by elevator | | L12 | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Algebra | Investigating and Solving Problems | C | 1 | 53 | N |

In a sequence of starts and stops, an elevator travels from the first floor to the fifth floor and then to the second floor. From there, the elevator travels to the fourth floor and then to the third floor. If the floors are 3 m apart, how far has the elevator traveled?
A. 18 m
B. $\quad 27 \mathrm{~m}$
C. $\quad 30 \mathrm{~m}$
D. $\quad 45 \mathrm{~m}$

| Most paces to walk to end of hallway | | L13 | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Measurement | Investigating and Solving Problems | D | 1 | 67 | N |

Four girls measured the length of their paces. The chart shows their measurements.

Name	Length of Pace
Polly	80 cm
Maria	65 cm
Helen	75 cm
Susan	60 cm

Who would take the most paces in walking from one end of a hallway to the other?
A. Polly
B. Maria
C. Helen
D. Susan

Correct equation based on X / y table		L14				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra	Communicating and Reasoning

The table represents a relation between x and y.

Which of the following equations could represent the same relation?
A. $y=2 x+2$
B. $y=2 x-1$
C. $y=3 x+2$
D. $y=3 x+1$

x	y
1	1
2	4
3	7
4	10

E. $y=3 x-2$

Values in proportionality table		L15				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra	Using Routine Procedures

The table shows some values of x and y, where x is proportional to y.

x	4	8	Q
y	9	P	45

What are the values of P and Q ?
A. $\quad P=40$ and $Q=13$
B. $\quad P=18$ and $Q=17$
C. $\quad P=20$ and $Q=18$
D. $\quad P=40$ and $Q=18$
E. $\quad P=18$ and $Q=20$

Measure of angle in quadrilateral					L16
Content Category	Performance Expectation	$\begin{gathered} \begin{array}{c} \text { Item } \\ \text { Key } \end{array} \end{gathered}$	$\begin{aligned} & \hline \text { Score } \\ & \text { Points } \end{aligned}$	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Geometry	Investigating and Solving Problems	A	1	40	N

Subtraction with three fractions								Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Content Category	Performance Expectation	B	1		52	N					
Fractions and Number Sense	Using Routine Procedures										

A. $\frac{1}{5}$
B. $\frac{2}{5}$
C. $\frac{7}{15}$
D. $\frac{3}{4}$
E. $\frac{4}{5}$

| Number of cars from rounded value | | N11 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Using Routine Procedures | C | 1 | 74 | N |

A company produced 17175 cars in 1996. For a report, this number was rounded to the nearest hundred. Which was the number of cars given in the report?
B. 17100
C. 17200
D. 17270

Position of point on number line		N12				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Geometry	Using Routine Procedures
A	1	42	N			

Point P (not shown) on the number line is 5 units from point N and 2 units from point M.

Where is point P localed?
A. Between O and L
B. \quad Between L and M
C. Between M and N
D. To the right of N

Value of expression substituting $x=3$

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Algebra	Using Routine Procedures	Rubric	1	N	

Code		Response
	Correct Response	Item: M022118
$\mathbf{1 0}$	2	
$\mathbf{1 1}$	$18 / 9,2 / 1$ or other fraction equivalent to 2	
$\mathbf{1 9}$	Other correct	
	Incorrect Response	
$\mathbf{7 0}$	Indicates the correct substitution of $x=3$ in numerator and/or denominator but student did not correctly complete the solution.	
$\mathbf{7 1}$	Indicates a wrong substitution such as $5 x=53$ or $5 x=5+3$ in the numerator; for example, any fractions with 56 or 11 as numerators, or 40 or 4 as denominators.	
$\mathbf{7 2}$	A response containing the variable x	
$\mathbf{7 3}$	Cancels or ignores x 's (e.g., 8/, 8,7, etc.)	
$\mathbf{7 9}$	Other incorrect (including crossed out/erased, stray marks, illegible, or off task)	
	Nonresponse	
$\mathbf{9 9}$	BLANK	

| List of equivalent fractions | | | N14 | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Knowing | B | 1 | 61 | N |

In which list of fractions are all of the fractions equivalent?
A. $\frac{1}{2}, \frac{2}{4}, \frac{4}{6}$
B. $\frac{2}{3}, \frac{4}{6}, \frac{8}{12}$
C. $\frac{2}{5}, \frac{4}{10}, \frac{8}{50}$
D. $\frac{3}{4}, \frac{4}{6}, \frac{6}{8}$

| Angle closest to $\mathbf{4 5}$ degrees | | | N15 | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Measurement | Knowing | D | 1 | 60 | N |

Which angle in the figure has a measure closest to 45° ?

A. p
B. q
C. r
D. s

| Number of marbles in bag | | | N16 | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Investigating and Solving Problems | B | 1 | 44 | N |

Penny had a bag of marbles. She gave one-third of them to Rebecca, and then one-fourth of the remaining marbles to John. Penny then had 24 marbles left in the bag. How many marbles were in the bag to start with?
A. 36
B. 48
C. 60
D. 96

| Amount of paint left | | | N17 | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Investigating and Solving Problems | B | 1 | 35 | N |

A painter had 25 L of paint. He used 2.5 L of paint every hour. He finished the job in 5.5 hours. How much paint did he have left?
A. $\quad 10.25 \mathrm{~L}$
B. $\quad 11.25 \mathrm{~L}$
C. $\quad 12.75 \mathrm{~L}$
D. $\quad 13.75 \mathrm{~L}$

Probability of drawing chip					
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Data Representation, Analysis and Probability	Investigating and Solving Problems	C	1	N	

The eleven chips shown below are placed in a bag and mixed.

Chelsea draws one chip from the bag without looking. What is the probability that Chelsea draws a chip with a number that is a multiple of three?
A. $\frac{1}{11}$
B. $\frac{1}{3}$
C. $\frac{4}{11}$
D. $\frac{4}{7}$

Ratio of width/perimeter in rectangle		P08				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Measurement\quad Investigating and Solving Problems	D

The rectangle below is twice as long as it is wide.

What is the ratio of the width of the rectangle to its perimeter?
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{6}$

Expression equivalent to $n \times \mathbf{n} \mathbf{n}$		P09				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra Knowing	D

Which of these expressions is equivalent to $n \times n \times n$ for all values of n.
A. $\frac{n}{3}$
B. $n+3$
C. $3 n$
D. n^{3}

Length of side from similar triangle		P10				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Geometry	Using Routine Procedures
B	1		N			

The figure represents two similar triangles. The triangles are not drawn to scale.

In the actual triangle $A B C$, what is the length of side $B C$?

A $\quad 3.5 \mathrm{~cm}$
B. $\quad 4.5 \mathrm{~cm}$
C. 5 cm
D. $\quad 5.5 \mathrm{~cm}$
E. 8 cm

Equivalent expression: $\mathbf{k + k + k + k + k}$		P11				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra\quad Knowing	B

For all numbers k,
$k+k+k+k+k$ can be written as
A. $k+5$
B. $5 k$
C. k^{5}
D. $5(k+1)$

Length of string pulled straight		P12				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Measurement\quad Using Complex Procedures	C

If the string in the diagram is pulled straight, which of these is closest to its length?
A. 5 cm
B. 6 cm
C. 7 cm
D. 8 cm

Estimate of total cars in parking lot		P13				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Fractions and Number Sense Using Complex Procedures	C

There are 68 rows of cars in a parking lot. Fach row has 92 cars. Which of these would give the closest estimate of the total number of cars in the parking lot?
A. $60 \times 90=5400$
B. $60 \times 100=6000$
C. $70 \times 90=6300$
D. $70 \times 100=7000$

| Estimate of distance from explosion | | P14 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Investigating and Solving Problems | B | 1 | 56 | N |

Sound travels at approximately 330 meters per second. The sound of an explosion took 28 seconds to reach a person. Which of these is the closest estimate of how far away the person was from the explosion?
A. $\quad 12(0)() \mathrm{m}$
B. $\quad 9000 \mathrm{~m}$
C. $\quad 8000 \mathrm{~m}$
D. 6000 m

Fraction of cherries in basket				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Fractions and Number Sense	Investigating and Solving Problems	A	1	4

Robin and Jim took cherries from a basket. Robin took $\frac{1}{3}$ of the cherries and Jim took $\frac{1}{6}$ of the cherries. What fraction of the cherries remained in the basket?
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{18}$

Day/time in table at shown temperature

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Data Representation, Analysis and Probability	Using Complex Procedures in 1995			

This table shows temperatures at various times on four days.					
\begin{tabular}{\|l	c	c	c	c	c
\hline					
\end{tabular}					
	6 a.m.	9 a.m.	Noon	3 p.m.	6 p.m.
Monday	15°	17°	24°	21°	16°
Tuesday	20°	16°	15°	10°	9°
Wednesday	8°	14°	16°	19°	15°
Thursday	8°	11°	19°	26°	20°

On which day and at what time was the temperature shown in the table the same as that shown on the thermometer?
A. Monday, Noon
B. Tuesday, 6 a.m.
C. Wednesday, 3 p.m.
D. Thursday, 3 p.m.

Subtraction of decimals to $\mathbf{0 . 0 0 1}$		R07				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Fractions and Number Sense Using Routine Procedures	A

| Average weight of salt crystals | | R08 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Using Complex Procedures | B | 1 | 52 | N |

Time for pendulum to swing 20 times

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Data Representation, Analysis and Probability	Using Complex Procedures	B	1	54

The graph shows the time taken for a pendulum to swing backwards and forwards
20 times for different lengths of the string.

The length of a string is 90 cm . About how long would it take for the pendulum to swing backwards and forwards 20 times?
A. 35 seconds
B. 38 seconds
C. 42 seconds
D. 45 seconds

Expression when a,b,c are real		R10				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995 Algebra\quad Knowing	D

Which of the following is true when a, b, and c are different real numbers?
A. $\quad a-b=b-a$
B. $a(b \quad c)=b(c$
a)
C. $b-c=c-b$
D. $a b=b a$
E. $a b-c=a c-b$

Right triangles to cover rectangle

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Geometry	Using Complex Procedures in 1995			

How many of the shaded right triangles shown above are needed to exactly cover the surface of the rectangle?
A. Four
B. Six
C. Eight
D. Ten

| Operations on negative number | | | R12 | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | ltem
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Algebra | Knowing | A | 1 | 47 | N |

Subtraction of 4-digit whole numbers		R13				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995	
Fractions and Number Sense	Using Routine Procedures	B	1		74	N

A. 2035
B. 2925
C. 3005
D. 3925

Money from total magazine sales				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly
Fractions and Number Sense	Investigating and Solving Problems	Rubric	1	44

Note: There is no distinction made between responses with or without units.

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Algebra	Investigating and Solving Problems	Rubric	2	N	

A club has 86 members, and there are 14 more girls than boys. How many boys and how many girls are members of the club?

Show your work.

Area of rectangle inside parallelogram					
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Measurement	Investigating and Solving Problems	Rubric	1	43	N

The figure shows a shaded rectangle inside a parallelogram.

Code	Response	Item: M022244
	Correct Response	
10	20	
Incorrect Response		
70	$32 \sim[4 \times 8]$	
71	18 [perimeter]	
79	Other incorrect (including crossed out/erased, stray marks, illegible, or off task)	
Nonresponse		
99	BLANK	

Answer: \qquad

Height of stack from paper thickness		T04				
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995	
Fractions and Number Sense	Investigating and Solving Problems	C	1		N	

Cheaper magazine subscription		V02			
Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Data Representation, Analysis and Probability	Communicating and Reasoning	Rubric	2	24	N

Chris plans to order 24 issues of a magazine. He reads the following advertisements for two magazines. Ceds are the units of currency in Chris' country.

Which magazine is the least expensive for 24 issues? How much less expensive? Show your work.

Code	Response	Item: M022256
	Correct Response	
20	Teen Life. Calculations of both magazines are correct (60 ceds for Teen Life and 63 ceds for Teen News) and correct savings of 3 ceds	
29	Other correct (e.g., Teen Life. Calculation of one magazine correct, the other not shown, and correct savings of 3 ceds).	
Partial Response		
10	Correct calculations (60 and 63 ceds), but incorrect or no magazine identified and/or no difference given	
11	Correct calculation for Teen News (63 ceds), but incorrect calculation for Teen Life	
12	Incorrect calculation for Teen News but correct calculation for Teen Life (60 ceds)	
13	Teen Life, 3 ceds. No work shown	
19	Other partially correct response (e.g., correct calculations but incorrect difference)	
Incorrect Response		
79	Other incorrect (including crossed out/erased, stray marks, illegible, or off task)	
Nonresponse		
99	BLANK	

| Ratio of nitrate to total fertilizer | | V03 | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Content Category | Performance Expectation | Item
 Key | Score
 Points | International Average Percentage of
 8th Grade Students Responding Correctly | Used in 1995 |
| Fractions and Number Sense | Investigating and Solving Problems | D | 1 | 45 | N |

In making a garden fertilizer, a gardener mixes 2 kg of a nitrate, 3 kg of a phosphate, and 6 kg of potash. What is the ratio of nitrate to the total amount of fertilizer?

ก. $\frac{11}{9}$
B. $\frac{2}{3}$
C. $\frac{2}{9}$
D. $\frac{2}{11}$

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Algebra	Investigating and Solving Problems	Rubric	1	N	

a) Complete the table below. First, fill in how many circles make up Figure 4. Then, find the number of circles that would be needed for the 5th figure if the sequence of figures is extended.

Figure	Number of circles
1	1
2	3
3	6
4	
5	

b) The sequence of figures is extended to the 7th figure. How many circles would be needed for Figure 7?

Answer: \qquad
c) The 50th figure in the sequence contains 1275 circles. Determine the number of circles in the 51 st figure. Without drawing the 51 st figure, explain or show how you arrived at your answer
A. Codes for Number of Circles in Figures 4 and 5

Content Category	Performance Expectation	Item Key	Score Points	International Average Percentage of 8th Grade Students Responding Correctly	Used in 1995
Algebra	Communicating and Reasoning	Rubric	2	N	

a) Complete the table below. First, fill in how many circles make up Figure 4. Then, find the number of circles that would be needed for the 5th figure if the sequence of figures is extended

Figure	Number of circles
1	1
2	3
3	6
4	
5	

b) The sequence of figures is extended to the 7th figure. How many circles would be needed for Figure 7?

Answer: \qquad
c) The 50th figure in the sequence contains 1275 circles. Determine the numbe of circles in the 51 st figure. Without drawing the 51 st figure, explain or show how you arrived at your answer
C. Codes for Explanation and Answer for 51st Figure

Code	Response	Item: M022262c
	Correct Response	
20	1326. Correct general expression $\frac{\mathrm{n}(\mathrm{n}+1)}{2}, \frac{51(52)}{2}$, or equivalent	
21	1326 [Adds $1275+51$]	
29	Other fully correct, including [(figure number) ${ }^{2}$ - number of circles in previous figure]	
	Partial Response	
10	1326 without showing how obtained	
11	Correct method but does not write 1326 as answer	
19	Other partially correct	
Incorrect Response		
79	Other incorrect (including crossed out/erased, stray marks, illegible, or off task)	
Nonresponse		
99	BLANK	

TIMSS and PIRLS are copyrighted and are registered trademarks of IEA. Released items from TIMSS and PIRLS assessments are for non-commercial, educational, and research purposes only. Translated versions of items remain the intellectual property of IEA. Although the items are in the public domain, please print an acknowledgement of the source, including the year and name of the assessment you are using.

mathematics items

TIMSS 1999 MATHEMATICS ITEMS

Released Set for Eighth Grade

[^0]: 1. Results for 41 countries are reported in the 1995 international reports; Italy also completed the 1995 testing, but too late to be included.
[^1]: 2. The complete TIMSS curriculum frameworks can be found in Robitaille, D.F. et al. (1993). TIMSS Monograph No. 1: Curriculum Frameworks for Mathematics and Science. Vancouver, B.C.: Pacific Educational Press.
