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13.1 Overview The TIMSS achievement test design made use of matrix sampling 
techniques to divide the assessment item pool so that each sam-
pled student responded to just a portion of the items, thereby 
achieving wide coverage of the mathematics and science subject 
areas while keeping the response burden on individual students 
to a minimum.1 TIMSS relied on a sophisticated form of psycho-
metric scaling known as item response theory (IRT) scaling to 
combine the student responses in a way that provided accurate 
estimates of achievement. The TIMSS IRT scaling used multiple 
imputations or “plausible values” to obtain proficiency scores in 
mathematics and science and their content areas for all students, 
even though each student responded to only a part of the assess-
ment item pool.

The TIMSS 1999 Benchmarking study used the same scaling and 
imputation methodology as the TIMSS 1999 International compo-
nent. This chapter summarizes that methodology; further details 
can be found in the TIMSS 1999 Technical Report (see Yamamoto 
& Kulick, 2000).

13.2 TIMSS 1999 
Benchmarking
Scaling Methodology

Three distinct scaling models, depending on item type and scoring 
procedure, were used in analyzing the Benchmarking assessment 
data. Each is a latent variable model that describes the probability of 
a specific response to an item in terms of the respondent’s profi-
ciency, which is an unobserved or latent trait, and various charac-
teristics (or parameters) of the item. A three-parameter model was 
used with multiple-choice items, which were scored as correct or 
incorrect, and a two-parameter model for free-response items 
with just two response options, scored as correct or incorrect. 

1.  The TIMSS 1999 achievement test design is described in chapter 2. 
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Since each of these item types has just two response categories, 
they are known as dichotomous items. A partial-credit model was 
used with polytomous free-response items (i.e., those with more 
than two score points).

13.2.1 Three- and Two-Parameter IRT Models for 
Dichotomous Items 

The fundamental equation of the three-parameter logistic (3PL) 
model gives the probability that a person whose proficiency is 
characterized by the unobservable variable θ on a scale k will 
respond correctly to item i:

(1)

where

xi is the response to item i, 1 if correct and 0 if incorrect;

θk is the proficiency of a person on a scale k;

ai is the slope parameter of item i, characterizing its discriminat-
ing power;

bi is its location parameter, characterizing its difficulty;

ci is its lower asymptote parameter, reflecting the chances of 
respondents of very low proficiency selecting the correct answer.

The probability of an incorrect response to the item is defined as

(2) .

The two-parameter logistic (2PL) model was used for the short 
free-response items that were scored as correct or incorrect. The 
form of the 2PL model is the same as Equations (1) and (2) with 
the ci parameter fixed at zero.

In scaling the Benchmarking data, the three- and two-parameter 
models were used in preference to the one-parameter Rasch 
model, primarily because they can more accurately account for 
the differences among items in their ability to discriminate 
between students of high and low ability. With the Rasch model, 
all items are assumed to have the same discriminating power, 
while the 2PL and 3PL models provide an extra item parameter 
to account for differences among items, and the 3PL model has a 
parameter that can be used to model guessing behavior among 
low-ability students.

Pi1 xi 1 θk ai bi ci, , ,=( ) ci

1 ci–( )

1.0 1.7ai– θk bi–( )( )exp+
------------------------------------------------------------------+=

Pi0 P xi 0 θk ai bi ci, , ,=( )≡ 1 Pi1 θk( )–=
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Modeling item response functions as accurately as possible by 
using 2PL and 3PL models also reduces errors due to model mis-
specification. The error is apparent when the model cannot 
exactly reproduce or predict the data using the estimated param-
eters. The difference between the observed data and those gener-
ated by the model is directly proportional to the degree of model 
mis-specification. Current psychometric convention does not 
allow model mis-specification errors to be represented in the pro-
ficiency scores. Instead, once item response parameters are esti-
mated, they are treated as given and model mis-specification is 
ignored. For that reason it is generally preferable to use models 
that characterize the item response function as well as possible.

13.2.2 The IRT Model for Polytomous Items 

Free-response items requiring an extended response were scored 
for partial credit, with zero, one, and two as the possible score lev-
els. These polytomous items were scaled using a generalized par-
tial credit model (Muraki, 1992). The fundamental equation of 
this model gives the probability that a person with proficiency θk 
on scale k will have, for the ith item, a response xi that is scored in 
the lth of mi ordered score categories:

(3)

where
mi is the number of response categories for item i;

xi is the response to item i, possibilities ranging between 0 
and mi-1;

θk is the proficiency of a person on scale k;

ai is the slope parameter of item i, characterizing its discrimina-
tion power;

bi is the location parameter of item i, characterizing its difficulty;

di,l is the category l threshold parameter.

Indeterminacy of model parameters of the polytomous model are 
resolved by setting di,0=0 and setting

(4)  

P xi l θk ai bi di 1, … di mi 1–,,,,,,=( )

1.7
v 0=

l

∑ ai θk bi di v,+–( )exp

1.7
v 0=

g

∑ ai θk bi di v,+–( )exp
g 0=

mi 1–

∑
------------------------------------------------------------------------------------- Pil θk( )= =

di l,
l 1=

mi 1–

∑ 0=
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13.3 Item Parameter 
Estimation 

For all of the IRT models, there is a linear indeterminacy between 
the values of item parameters and proficiency parameters; that is, 
mathematically equivalent but different values of item parameters 
can be estimated on an arbitrarily linearly transformed proficiency 
scale. This linear indeterminacy can be resolved by setting the ori-
gin and unit size of the proficiency scale to arbitrary constants, 
such as mean of 500 with standard deviation of 100. 

IRT modeling relies on a number of assumptions, the most 
important being conditional independence. Under this assump-
tion, item response probabilities depend only on θκ (a measure of 
proficiency) and the specified parameters of the item, and are 
unaffected by the demographic characteristics or unique experi-
ences of the respondents, the data collection conditions, or the 
other items presented in the test. The joint probability of a partic-
ular response pattern x across a set of n items is then given by: 

(5)

where Pil(θk) is of the form appropriate to the type of item 
(dichotomous or polytomous), mi is equal to 2 for the dichoto-
mously scored items, and uil is an indicator variable defined by

(6)

Replacing the hypothetical response pattern with the real scored 
data, the above function can be viewed as a likelihood function to 
be maximized by a given set of item parameters. In TIMSS 1999 
Benchmarking analyses, estimates of both dichotomous and poly-
tomous item parameters were obtained by the NAEP BILOG/
PARSCALE program, which combines Mislevy and Bock’s (1982) 
BILOG and Muraki and Bock’s (1991) PARSCALE computer pro-
grams. The item parameters in each scale were estimated inde-
pendently of the parameters of other scales. Once items were 
calibrated in this manner, a likelihood function for the profi-
ciency θk was induced from student responses to the calibrated 
items. This likelihood function for the proficiency θk is called the 
posterior distribution of the θs for each respondent.

P x θk item parameters,( ) Pil θk( )
uil

l 0=

mi 1–

∏
i 1=

n

∏=

Uil

1if response xi is in category l

0 otherwise


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13.3.1 Evaluating Fit of IRT Models to the Data

The fit of the IRT models to the TIMSS 1999 data was examined 
within each scale by comparing the empirical item response func-
tions with the theoretical item response function curves (see 
Exhibits 13.1 and 13.2). The theoretical curves are plots of the 
response functions generated by the model using values of the 
item parameters estimated from the data. The empirical results 
are calculated from the posterior distributions of the θs for each 
respondent who received the item. For dichotomous items the 
plotted values are the sums of these individual posteriors at each 
point on the proficiency scale for those students that responded 
correctly plus a fraction of the omitted responses, divided by the 
sum of the posteriors of all that were administered the item. For 
polytomous items, the sums for those who scored in the category 
of interest is divided by the sum for all those that were adminis-
tered the item.

Exhibit 13.1 TIMSS 1999 Grade 8 Science Assessment Example Item Response 
Function—Dichotomous Item



264

TIMSS 1999 Benchmarking • Technical Report • Chapter 13

Exhibit 13.2 TIMSS 1999 Grade 8 Science Assessment Example Item Response 
Function—Polytomous Item

Exhibit 13.1 shows a plot of the empirical and theoretical item 
response functions for a dichotomous item. The horizontal axis 
represents the proficiency scale, and the vertical axis represents 
the probability of a correct response. The solid curve is the theo-
retical curve based on the estimated item parameters. The cen-
ters of the small circles represent the empirical proportions 
correct. The size of the circles is proportional to the sum of the 
posteriors at each point on the proficiency scale for all of those 
who received the item; this is related to the number of respon-
dents contributing to the estimation of that empirical proportion 
correct. Exhibit 13.2 shows a plot of the empirical and theoretical 
item response functions for a polytomous item. Again, the hori-
zontal axis represents the proficiency scale, but the vertical axis 
represents the probability of having a response fall in a given 
score category. The interpretation of the small circles is the same 
as in Exhibit 13.1. For items where the model fits the data well, 
the empirical and theoretical curves are close together.

13.4 Scaling 
Mathematics and 
Science Domains 
and 
Content Areas

In order to estimate student proficiency scores for the subject 
domains of mathematics and science, all items in each subject 
domain were calibrated together. This approach was chosen 
because it produced the best summary of student proficiency 
across the whole domain for each subject. Treating the entire 
mathematics or science item pool as a single domain maximizes 
the number of items per respondent, and the greatest amount of 
information possible is used to describe the proficiency distribu-
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tion. This was found to be a more reliable way to compare profi-
ciency across countries than to make a scale for each content area, 
such as algebra, geometry, etc., and then form a composite mea-
sure of mathematics by combining the content area scales. 

A disadvantage of this approach is that differences in content 
scales may be underemphasized as they tend to regress toward 
the aggregated scale. Therefore, to enable comparisons of stu-
dent proficiency on content scales, TIMSS provided separate 
scale scores of each content area in mathematics and science. If 
each content area is treated separately when estimating item 
parameters, differential profiles of content area proficiency can 
be examined, both across countries and across subpopulations 
within a country.

13.4.1 Omitted and Not-Reached Responses.

Apart from data that by design were not administered to a stu-
dent, missing data could also occur when a student did not 
answer an item, whether because the student did not know the 
answer, omitted it by mistake, or did not have time to attempt the 
item. In TIMSS 1999, not reached items were treated differently 
in estimating item parameters and in generating student profi-
ciency scores. In estimating the values of the item parameters, 
items that were considered as not having been reached by stu-
dents were treated as if they had not been administered. This 
approach was optimal for parameter estimation. However, since 
the time allotment for the TIMSS 1999 tests was generous, and 
enough for even marginally able respondents to complete the 
items, not reached items were considered to have incorrect 
responses when student proficiency scores were generated. 

13.4.2 Proficiency Estimation Using Plausible Values

Most cognitive skills testing is concerned with accurately assessing 
the performance of individual respondents for the purposes of 
diagnosis, selection, or placement. Regardless of the measurement 
model used, classical test theory or item response theory, the accu-
racy of these measurements can be improved - that is, the amount 
of measurement error can be reduced - by increasing the number 
of items given to the individual. Thus, it is common to see achieve-
ment tests designed to provide information on individual students 
that contain more than 70 items. Since the uncertainty associated 
with each θ in such tests is negligible, the distribution of θ or the 
joint distribution of θ with other variables can be approximated 
using individual θs. 
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For the distribution of proficiencies in large populations, more 
efficient estimates can be obtained from a matrix-sampling 
design like that used in TIMSS 1999. This design solicits relatively 
few responses from each sampled respondent while maintaining 
a wide range of content representation when responses are aggre-
gated across all respondents. With this approach, however, the 
advantage of estimating population characteristics more effi-
ciently is offset by the inability to make precise statements about 
individuals. The uncertainty associated with individual θ esti-
mates becomes too large to be ignored. In this situation, aggrega-
tions of individual student scores can lead to seriously biased 
estimates of population characteristics (Wingersky, Kaplan, & 
Beaton, 1987).

Plausible-values methodology was developed as a way to address 
this issue by using all available data to estimate directly the char-
acteristics of student populations and subpopulations, and then 
generating imputed scores or plausible-values from these distri-
butions that can be used in analyses with standard statistical soft-
ware. A detailed review of plausible values methodology is given 
in Mislevy (1991).2

The following is a brief overview of the plausible-values approach. 
Let  represent the responses of all sampled students to back-
ground questions or background data of sampled students col-
lected from other sources, and let  represent the proficiency of 
interest. If  were known for all sampled students, it would be 
possible to compute a statistic  - such as a sample mean or 
sample percentile point - to estimate a corresponding population 
quantity T.

Because of the latent nature of the proficiency, however,  values 
are not known even for sampled respondents. The solution to 
this problem is to follow Rubin (1987) by considering  as “miss-
ing data” and approximate  by its expectation given , 
the data that actually were observed, as follows:

(7) .

2. Along with theoretical justifications, Mislevy presents comparisons with standard pro-
cedures, discusses biases that arise in some secondary analyses, and offers 
numerical examples.

y

θ

θ

t θ y,( )

θ

θ

t θ y,( ) x y,( )

t* x y,( ) E t θ y,( ) x y,( )[ ] t θ y,( )p θ x y,( )( ) θd∫= =
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It is possible to approximate t* using random draws from the con-
ditional distribution of the scale proficiencies given the student’s 
item responses xj, the student’s background variables yj, and 
model parameters for the sampled student j. These values are 
referred to as imputations in the sampling literature, and as plau-
sible values in large-scale surveys such as NAEP, NALS, and 
IALLS.3 The value of θ for any respondent that would enter into 
the computation of t is thus replaced by a randomly selected 
value from his or her conditional distribution. Rubin (1987) pro-
posed repeating this process several times so that the uncertainty 
associated with imputation can be quantified by “multiple impu-
tation.” For example, the average of multiple estimates of t, each 
computed from a different set of plausible values, is a numerical 
approximation of t* of the above equation; the variance among 
them reflects uncertainty due to not observing . It should be 
noted that this variance does not include the variability of 
sampling from the population.

Plausible values are not test scores for individuals in the usual 
sense, but rather are imputed values that may be used to estimate 
population characteristics correctly. When the underlying condi-
tioning model is correctly specified, plausible values will provide 
consistent estimates of population proficiency, even though they 
are not generally unbiased estimates of the proficiencies of the 
individuals with whom they are associated.4

Plausible values for each respondent j are drawn from the condi-
tional distribution , where Γ is a matrix of regres-
sion coefficients for the background variables, and Σ is a 
common variance matrix for residuals. Using standard rules of 
probability, the conditional probability of proficiency can be rep-
resented as

(8)

where  is a vector of scale values,  is the product over the 
scales of the independent likelihoods induced by responses to 
items within each scale, and  is the multivariate joint 

3. U.S. National Assessment of Educational Progress (NAEP), U.S. National Adult Literacy 
Survey (NALS), the International Adult Literacy and Life Skills Survey (IALLS).

4. For further discussion, see Mislevy, Beaton, Kaplan, & Sheehan (1992).
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density of proficiencies of the scales, conditional on the observed 
value  of background responses and parameters Γ and Σ. Item 
parameter estimates are fixed and regarded as population values 
in the computations described in this section.

13.4.3 Conditioning

A multivariate normal distribution was assumed for , 
with a common variance Σ, and with a mean given by a linear 
model with regression parameters Γ. Since in large-scale studies 
like TIMSS there are many hundreds of background variables, it 
is customary to conduct a principal components analysis to 
reduce the number to be used in Γ. Typically, components repre-
senting 90% of the variance in the data are selected. These prin-
cipal components are referred to as the conditioning variables 
and denoted as . The following model is then fit to the data:

(9)

where ε is normally distributed with mean zero and variance Σ. As 
in a regression analysis Γ is a matrix each of whose columns are 
the effects for each scale and Σ is the matrix of residual variance 
between scales.

In order to be strictly correct for all functions Γ of , it is neces-
sary that  be correctly specified for all background variables 
in the survey. In Benchmarking, however, principal-component 
scores based on nearly all background variables were used. Those 
selected variables were chosen to reflect high relevance to policy 
and to education practices. The computation of marginal means 
and percentile points of  for these variables is nearly optimal. 
Estimates of functions Γ involving background variables not con-
ditioned in this manner are subject to estimation error due to 
mis-specification. The nature of these errors is discussed in detail 
in Mislevy (1991). 

The basic method for estimating Γ and Σ with the Expectation 
and Maximization (EM) procedure is described in Mislevy (1985) 
for a single scale case. The EM algorithm requires the computa-
tion of the mean, , and variance Σ, of the posterior distribution 
in equation (7). For the multiple content area scales of TIMSS 
1999, the computer program CGROUP (Thomas, 1993) was 
used. The program implemented a method to compute the 
moments using higher-order asymptotic corrections to a normal 
approximation. Case weights were employed in this step.
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13.4.4 Generating Proficiency Scores

After completing the EM algorithm, the plausible values are 
drawn in a three-step process from the joint distribution of the 
values of Γ for all sampled. First, a value of Γ is drawn from a nor-
mal approximation to  that fixes Σ at the value  
(Thomas, 1993). Second, conditional on the generated value of Γ 
(and the fixed value of Σ= ), the mean, , and variance, Σj

p, of 
the posterior distribution in equation (2) are computed using 
the methods applied in the EM algorithm. In the third step, the 
proficiency values are drawn independently from a multivariate 
normal distribution with mean  and variance Σj

p. These three 
steps are repeated five times, producing five imputations of  for 
each sampled respondent.

For respondents with an insufficient number of responses, the Γ 
and Σ described in the previous paragraph were fixed. Hence, all 
respondents — regardless of the number of items attempted — 
were assigned a set of plausible values for the various scales.

The plausible values could then be employed to evaluate equa-
tion (7) for an arbitrary function T as follows:

1. Using the first vector of plausible values for each respondent, 
evaluate T as if the plausible values were the true values of θ. 
Denote the result T1.

2. As in step 1 above, evaluate the sampling variance of T, or 
Var(T1), with respect to respondents’ first vectors of plausible 
values. Denote the result Var1.

3. Carry out steps 1 and 2 for the second through fifth vectors of 
plausible values, thus obtaining Tu and Varu for u=2, . . ., M, 
where M is the number of imputed values.

4. The best estimate of T obtainable from the plausible values is 
the average of the five values obtained from the different sets 
of plausible values:

(10)

P Γ Σ, x
j

y
j
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5. An estimate of the variance of T is the sum of two compo-
nents: an estimate of Var(Tu) obtained as in step 4 and the 
variance among the Tus:

(11)

The first component in Var(T) reflects uncertainty due to sam-
pling respondents from the population; the second reflects 
uncertainty due to the fact that sampled respondents’ θs are not 
known precisely, but only indirectly through x and y.

13.4.5 Working with Plausible Values

Plausible-values methodology was used in TIMSS 1999 to increase 
the accuracy of estimates of the proficiency distributions for various 
subpopulations and for the TIMSS 1999 population as a whole. This 
method correctly retains the uncertainty associated with proficiency 
estimates for individual respondents by using multiple imputed 
proficiency values rather than assuming that this type of uncertainty 
is zero — a more common practice. Yet, retaining this component of 
uncertainty requires that additional analytic procedures be used to 
estimate respondents’ proficiencies, as follows.

If  values were observed for sampled respondents, the statistic 
(t-T)/U1/2 would follow a t-distribution with d degrees of freedom. 
Then the incomplete-data statistic (t*-T)/(Var(t*))1/2 is approxi-
mately t-distributed, with degrees of freedom (Johnson & Rust, 
1993) given by

(12)

where d is the degrees of freedom, and f is the proportion of 
total variance due to not observing  values:

(13) .

Here BM is the variance among M imputed values and VM is the 
final estimate of the variance of T. When B is small relative to U*, 
the reference distribution for incomplete-data statistics differs 
little from the reference distribution for the corresponding 
complete-data statistics. If, in addition, d is large, the normal 
approximation can be used instead of the t-distribution.
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For k-dimensional t, such as the k coefficients in a multiple regres-
sion analysis, each U and U* is a covariance matrix, and B is an 
average of squares and cross-products rather than simply an aver-
age of squares. In this case, the quantity (T-t*)V-1 (T-t*)’ is approxi-
mately F distributed with degrees of freedom equal to k and ν, 
with ν defined as above but with a matrix generalization of fM 

(14) .

A chi-square distribution with k degrees of freedom can be used 
in place of f for the same reason that the normal distribution can 
approximate the t distribution.

Statistics t*, the estimates of ability conditional on responses to 
cognitive items and student background variables, are consistent 
estimates of the corresponding population values T, as long as 
background variables are included in the conditioning variables. 
The consequences of violating this restriction are described by 
Beaton and Johnson (1990), Mislevy (1991), and Mislevy and 
Sheehan (1987). To avoid such biases, the TIMSS 1999 analyses 
included nearly all student background variables.

13.5 Implementing the 
TIMSS 
Benchmarking 
Scaling Procedures

This section provides a synopsis of the IRT scaling and plausible-
value methodology applied to the TIMSS 1999 data. Three major 
tasks were completed, as follows.

13.5.1 Rescaling of the TIMSS 1995 Data 

TIMSS 1995 also made use of IRT scaling with plausible values 
(Adams, Wu, and Macaskill, 1997). The scaling model, however, 
relied on the one-parameter Rasch model rather than the more 
general two- and three-parameter models used in TIMSS 1999. 
Since a major goal of TIMSS 1999 was to measure trends by com-
paring results from both data collections, it was important that 
both sets of data be on the same scale. Accordingly it was decided 
as a first step to rescale the 1995 data using the scaling models 
from 1999.

The rescaling of the TIMSS 1995 data was conducted according 
to the method described in the TIMSS 1999 Technical Report 
(Yamamoto & Kulick, 2000). The scale was set so the distribution 
of eighth-grade proficiency scores in 1995 had a mean of 500 and 
a standard deviation of 100 for both the mathematics and science 
scales (Gonzalez, 1997). Setting the scale metric in this way pro-

f
1 M 1–

–( )Trace BV 1–
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duces slightly different means and standard deviations than in 
the original TIMSS 1995 results. Comparison of the original and 
rescaled 1995 proficiency scores is not appropriate because of 
this difference in the scale metric.

13.5.2 Scaling the 1999 Data and Linking to the 1995 Data 

Since the achievement item pools used in 1995 and 1999 had 
about one-third of the items in common, the scaling of the 1999 
data was designed to place both data sets on a common IRT scale. 
Although the common items administered in 1995 and 1999 
formed the basis of the linkage, all of the items used in each data 
collection were included in the scaling since this increases the 
information for proficiency estimation and reduces measure-
ment error. 

The linking of the 1995 and 1999 scales was done at the mathe-
matics and science domain levels only, since there were not 
enough common items to enable reliable linking within each 
content area. 

13.5.3 Creating IRT Scales for Mathematics and Science Content 
Areas for 1995 and 1999 Data

IRT scales were also developed for each of the content areas in 
mathematics and science for both 1995 and 1999. Because there 
were few items common to the two assessments, and because of 
some differences in their composition, the two scales were not 
linked, but rather each was established independently.

For TIMSS 1999, the international mean for mathematics was 487 
and the international mean for science was 488. The international 
mean for each content area was set to be equal to the subject area 
international mean.

13.5.4 Proficiency Scores for Benchmarking Students

Benchmarking plausible values for each student were generated 
using item statistics obtained from the international study. Conse-
quently, the benchmarking plausible values are directly compara-
ble to those obtained in the international study. For each student, 
five plausible values were produced for each of the five mathemat-
ics content areas (fractions and number sense; measurement; data 
representation, analysis, and probability; geometry; and algebra), 
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as well as for mathematics overall. Similarly, plausible values were 
generated for each student in each of the six science content areas 
(earth science; life science; physics; chemistry; scientific inquiry; 
and the nature of science) and science overall.

13.6 Summary IRT was used to model the TIMSS achievement data. TIMSS 
used two- and three-parameter IRT models, and plausible-value 
technology to reanalyze the 1995 achievement data and analyze 
the 1999 achievement data. Plausible-value methodology was 
used to generate proficiency estimates for each subject and 
each content area.
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