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TIMSS and PIRLS Achievement 
Scaling Methodology1

The TIMSS and PIRLS approach to scaling the achievement data, based 
on item response theory (IRT) scaling with marginal estimation, was developed 
originally by Educational Testing Service for use in the U.S. National Assessment 
of Educational Progress. It is based on psychometric models that were first used 
in the field of educational measurement in the 1950s and have become popular 
since the 1970s for use in large-scale surveys, test construction, and computer 
adaptive testing.2

Three distinct IRT models, depending on item type and scoring procedure, 
were used in the analysis of the TIMSS and PIRLS 2011 assessment data. Each 
is a “latent variable” model that describes the probability that a student will 
respond in a specific way to an item in terms of the student’s proficiency, which 
is an unobserved, or “latent”, trait, and various characteristics (or “parameters”) 
of the item. A three-parameter model was used with multiple-choice items, 
which were scored as correct or incorrect, and a two-parameter model for 
constructed-response items with just two response options, which also were 
scored as correct or incorrect. Since each of these item types has just two 
response categories, they are known as dichotomous items. A partial credit 
model was used with polytomous constructed-response items, i.e., those with 
more than two response options.

Two-	and	Three-Parameter	IRT	Models	for	
Dichotomous	Items

The fundamental equation of the three-parameter (3PL) model gives the 
probability that a student whose proficiency on a scale k is characterized by the 
unobservable variable θk will respond correctly to item i as:

(1) 
  
P xi =1 θk , ai ,bi , ci( ) = ci +

1− ci

1+exp −1.7 ⋅ai ⋅(θk −bi )( )
≡ Pi ,1 θk( )

1	 This	description	of	the	TIMSS	and	PIRLS	scaling	methodology	has	been	adapted	with	permission	from	the	TIMSS	1999	
Technical	Report	(Yamamoto	and	Kulick,	2000).

2	 For	a	description	of	IRT	scaling	see	Birnbaum	(1968);	Lord	and	Novick	(1968);	Lord	(1980);	Van	Der	Linden	and	Hambleton	
(1996).	The	theoretical	underpinning	of	the	multiple	imputation	methodology	was	developed	by	Rubin	(1987),	applied	
to	large-scale	assessment	by	Mislevy	(1991),	and	studied	further	by	Mislevy,	Johnson	and	Muraki	(1992),	and	Beaton	and	
Johnson	(1992).	The	procedures	used	in	TIMSS	and	PIRLS	have	been	used	in	several	other	large-scale	surveys,	including	
the	U.S.	National	Assessment	of	Educational	Progress	(NAEP),	the	U.S.	National	Adult	Literacy	Survey	(NALS),	the	
International	Adult	Literacy	Survey	(IALS),	and	the	International	Adult	Literacy	and	Life	Skills	Survey	(IALLS).
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where
xi is the response to item i, 1 if correct and 0 if incorrect;

 θk  is the proficiency of a student on a scale k (note that a student with 
higher proficiency has a greater probability of responding correctly);

ai is the slope parameter of item i, characterizing its discriminating power;

bi is the location parameter of item i, characterizing its difficulty;

ci is the lower asymptote parameter of item i, reflecting the chances of 
students with very low proficiency selecting the correct answer.

The probability of an incorrect response to the item is defined as:

(2)   
Pi ,0 = P xi = 0 θk , ai ,bi , ci( ) = 1−Pi ,1 θk( )

The two-parameter (2PL) model was used for the constructed-response 
items that were scored as either correct or incorrect. The form of the 2PL model 
is the same as Equations (1) and (2) with the ci parameter fixed at zero.

IRT	Model	for	Polytomous	Items
In TIMSS and PIRLS, constructed response items requiring an extended 
response were scored for partial credit, with 0, 1, and 2 (TIMSS) and 0, 1, 2, 
and 3 (PIRLS) as the possible score levels. These polytomous items were scaled 
using a generalized partial credit model (Muraki, 1992). The fundamental 
equation of this model gives the probability that a student with proficiency 
θk on scale k will have, for the ith item, a response xi that is scored in the l th of
mi ordered score categories as:

(3) 

where
mi is the number of response categories for item i, usually 3;

xi is the response to item i, ranging between 0 and mi –1;

 θk  is the proficiency of a student on a scale k;

ai is the slope parameter of item i;

   

P xi = l θk , ai ,bi , di ,1 ,L , di ,mi −1( ) =

exp 1.7 ⋅ai ⋅ θk −bi +di ,v( )
v=0
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bi is its location parameter, characterizing its difficulty;

di,1 is the category l threshold parameter.

The indeterminacy of model parameters in the polytomous model is 

resolved by setting 
  
di ,0 = 0  and 

  
di , j

j=1

mi −1

∑ = 0 .

For all of the IRT models there is a linear indeterminacy between the values 
of item parameters and proficiency parameters, i.e., mathematically equivalent 
but different values of item parameters can be estimated on an arbitrarily 
linearly transformed proficiency scale. This linear indeterminacy can be resolved 
by setting the origin and unit size of the proficiency scale to arbitrary constants, 
such as a mean of 500 and a standard deviation of 100, as was done originally for 
TIMSS in 1995 and PIRLS in 2001. The indeterminacy is most apparent when 
the scale is set for the first time.

IRT modeling relies on a number of assumptions, the most important being 
conditional independence. Under this assumption, item response probabilities 
depend only on θk (a measure of a student’s proficiency) and the specified 
parameters of the item, and are unaffected by the demographic characteristics 
or unique experiences of the students, the data collection conditions, or the 
other items presented in the test. Under this assumption, the joint probability 
of a particular response pattern x across a set of n items is given by:

(4) 
  
P x θk , item parameters( ) = Pi ,l θk( )ui ,l

l=0

mi −1

∏
i=1

n

∏

where  
Pi,l θk( )  is of the form appropriate to the type of item (dichotomous or 

polytomous), mi is equal to 2 for dichotomously scored items, and ui,l is an 
indicator variable defined as:

(5) 
  
ui ,l =

1
0

if response xi is in category l;
otherwise.

⎧
⎨
⎩

Replacing the hypothetical response pattern with the real scored data, the 
above function can be viewed as a likelihood function to be maximized by a 
given set of item parameters. In TIMSS and PIRLS, the item parameters for 
each scale are estimated independently of the parameters of other scales. Once 
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items were calibrated in this manner, a likelihood function for the proficiency 

 θk  was induced from student responses to the calibrated items. This likelihood 
function for the proficiency  θk is called the posterior distribution of the θ’s for 
each student.

Proficiency	estimation	Using	Plausible	values
Most cognitive skills testing is concerned with accurately assessing the 
performance of individual students for the purposes of diagnosis, selection, 
or placement. Regardless of the measurement model used, whether classical 
test theory or item response theory, the accuracy of these measurements can 
be improved—that is, the amount of measurement error can be reduced—by 
increasing the number of items given to the individual. Thus, it is common to 
see achievement tests designed to provide information on individual students 
that contain more than 70 items. Since the uncertainty associated with each θ 
in such tests is negligible, the distribution of θ, or the joint distribution of θ 
with other variables, can be approximated using each individual’s estimated θ.

For the distribution of proficiencies in large populations, however, more 
efficient estimates can be obtained from a matrix-sampling design like that 
used in TIMSS and PIRLS. This design solicits relatively few responses from 
each sampled student while maintaining a wide range of content representation 
when responses are aggregated across all students. With this approach, however, 
the advantage of estimating population characteristics more efficiently is offset 
by the inability to make precise statements about individuals. The uncertainty 
associated with individual θ estimates becomes too large to be ignored. In this 
situation, aggregations of individual student scores can lead to seriously biased 
estimates of population characteristics (Wingersky, Kaplan, & Beaton, 1987).

Plausible values methodology was developed as a way to address this issue. 
Instead of first computing estimates of individual θ’s and then aggregating 
these to estimate population parameters, the plausible values approach uses all 
available data, students’ responses to the items they were administered together 
with all background data, to estimate directly the characteristics of student 
populations and subpopulations. Although these directly estimated population 
characteristics could be used for reporting purposes, instead the usual plausible 
values approach is to generate multiple imputed scores, called plausible values, 
from the estimated ability distributions and to use these in analyses and 
reporting, making use of standard statistical software. By including all available 
background data in the model, a process known as “conditioning”, relationships 
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between these background variables and the estimated proficiencies will be 
appropriately accounted for in the plausible values. Because of this, analyses 
conducted using plausible values will provide an accurate representation of these 
underlying relationships. A detailed review of the plausible values methodology 
is given in Mislevy (1991).3

The following is a brief overview of the plausible values approach. Let y 
represent the responses of all sampled students to background questions or 
background data of sampled students collected from other sources, and let θ 
represent the proficiency of interest. If θ were known for all sampled students, it 
would be possible to compute a statistic t(θ,y), such as a sample mean or sample 
percentile point, to estimate a corresponding population quantity T.

Because of the latent nature of the proficiency, however, θ values are not 
known even for sampled students. The solution to this problem is to follow 
Rubin (1987) by considering θ as “missing data” and approximate t(θ,y) by its 
expectation given (x, y), the data that actually were observed, as follows:

(6) 
t x y E t y x y

t y p x y d

∗ ( ) = ( )
= ( ) ( )∫

, , | ,

, ,

θ

θ θ θ

It is possible to approximate t✳ using random draws from the conditional 
distribution of the scale proficiencies given the student’s item responses xj, 
the student’s background variables yj, and model parameters for the items. 
These values are referred to as imputations in the sampling literature, and as 
plausible values in large-scale surveys such as PIRLS, TIMSS, NAEP, NALS, and 
IALLS. The value of θ for any student that would enter into the computation 
of t is thus replaced by a randomly selected value from his or her conditional 
distribution. Rubin (1987) proposed repeating this process several times so 
that the uncertainly associated with imputation can be quantified. For example, 
the average of multiple estimates of t, each computed from a different set of 
plausible values, is a numerical approximation of t✳ of the above equation; the 
variance among them reflects the uncertainty due to not observing θ . It should 
be noted that this variance does not include the variability of sampling from 

3	 Along	with	theoretical	justifications,	Mislevy	presents	comparisons	with	standard	procedures;	discusses	biases	that	arise	
in	some	secondary	analyses;	and	offers	numerical	examples.
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the population. That variability is estimated separately by a jackknife variance 
estimation procedure.

Plausible values are not intended to be estimates of individual student 
scores, but rather are imputed scores for like students—students with similar 
response patterns and background characteristics in the sampled population—
that may be used to estimate population characteristics correctly. When the 
underlying model is correctly specified, plausible values will provide consistent 
estimates of population characteristics, even though they are not generally 
unbiased estimates of the proficiencies of the individuals with whom they are 
associated. Taking the average of the plausible values still will not yield suitable 
estimates of individual student scores.4

Plausible values for each student j are drawn from the conditional 
distribution 

  
P θ j x j , y j ,Γ,Σ( ) , where Γ is a matrix of regression coefficients 

for the background variables, and Σ is a common variance matrix of residuals. 
Using standard rules of probability, the conditional probability of proficiency 
can be represented as:

(7) 

where 
 
θj  is a vector of scale values, 

 
P x j θ j( )  is the product over the scales 

of the independent likelihoods induced by responses to items within each 
scale, and 

  
P θ j y j ,Γ,Σ( )  is the multivariate joint density of proficiencies 

for the scales, conditional on the observed values yj of background responses 
and parameters Γ and Σ. Item parameter estimates are fixed and regarded as 
population values in the computations described in this section.

Conditioning
A multivariate normal distribution was assumed for 

  
P θ j y j ,Γ,Σ( ) , with a 

common variance Σ, and with a mean given by a linear model with regression 
parameters Γ. Since in large-scale studies like TIMSS and PIRLS there are 
many hundreds of background variables, it is customary to conduct a principal 
components analysis to reduce the number of variables to be used in Γ. 
Typically, components accounting for 90 percent of the variance in the data 

4	 For	further	discussion,	see	Mislevy,	Beaton,	Kaplan,	and	Sheehan	(1992).

  
P θ j x j , y j ,Γ,Σ( ) ∝ P x j θ j , y j ,Γ,Σ( ) P θ j y j ,Γ,Σ( ) = P x j θ j( ) P θ j y j ,Γ,Σ( )
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are selected. These principal components are referred to as the conditioning 
variables and denoted as yc. The following model is then fit to the data:

(8)  θ = ʹΓ yc +ε

where ε is normally distributed with mean zero and variance Σ. As in a 
regression analysis, Γ is a matrix each of whose columns is the effects for each 
scale and Σ is the matrix of residual variance between scales.

Note that in order to be strictly correct for all functions Γ of θ, it is 
necessary that 

 
P θ y( )  be correctly specified for all background variables in the 

survey. Estimates of functions Γ involving background variables not conditioned 
in this manner are subject to estimation error due to misspecification. The 
nature of these errors is discussed in detail in Mislevy (1991). In TIMSS and 
PIRLS, however, the principal component account for almost all of the variance 
in the student background variables, so that the computation of marginal means 
and percentile points of θ for these variables is nearly optimal.

The basic method for estimating Γ and Σ with the Expectation and 
Maximization (EM) procedure is described in Mislevy (1985) for a single scale 
case. The EM algorithm requires the computation of the mean θ, and variance 
Σ, of the posterior distribution in equation (7).

generating	Proficiency	Scores
After completing the EM algorithm, plausible values for all sampled students are 
drawn from the joint distribution of the values of Γ in a three-step process. First, 
a value of Γ is drawn from a normal approximation to 

  
P Γ,Σ xj , yj( )  that fixes Σ 

at the value 
 

Σ$  (Thomas, 1993). Second, conditional on the generated value of 
Γ (and the fixed value of ), the mean 

 
θj  and variance 

 
Σ j

p  of the posterior 
distribution in equation (7), where p is the number of scales, are computed using 
the methods applied in the EM algorithm. In the third step, the proficiency 
values are drawn independently from a multivariate normal distribution with 
mean 

 
θj  and variance 

 
Σ j

p . These three steps are repeated five times, producing 
five imputations of 

 
θj  for each sampled student.

For students with an insufficient number of responses, the Γ’s and Σ’s 
described in the previous paragraph are fixed. Hence, all students – regardless 
of the number of items attempted – are assigned a set of plausible values.

The plausible values can then be employed to evaluate equation (6) for an 
arbitrary function T as follows:
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 � Using the first vector of plausible values for each student, evaluate T as if 
the plausible values were the true values of θ. Denote the result as T1.

 � Evaluate the sampling variance of T1, or Var1, with respect to students’ 
first vector of plausible values.

 � Carry out steps 1 and 2 for the second through fifth vectors of plausible 
values, thus obtaining Tu and Varu for u = 2, …, 5.

 � The best estimate of T obtainable from the plausible values is the average 
of the five values obtained from the different sets of plausible values:

T =

Tu
u
∑

5

 � An estimate of the variance of  is the sum of two components: an 
estimate of Varu obtained by averaging as in the previous step, and the 
variance among the Tu’s.

 Let 
 
U =

Varu
u
∑

M
, and let 

   
BM =

Tu −Tµ( )
2

u
∑

M −1
 be the variance among the

 M plausible values. Then the estimate of the total variance of  is:

(9) 
   
Var Tµ( ) = U + 1+M−1( ) BM

The first component in Var(T̂ ) reflects the (uncertainty due to sampling 
students from the population; the second reflects the uncertainty due to the fact 
that sampled students’ θ’s are not known precisely, but only indirectly through 
x and y.

Working	with	Plausible	values
The plausible values methodology is used in TIMSS and PIRLS to ensure 
the accuracy of estimates of the proficiency distributions for the TIMSS and 
PIRLS populations as a whole and particularly for comparisons between 
subpopulations. A further advantage of this method is that the variation between 
the five plausible values generated for each student reflects the uncertainty 
associated with proficiency estimates for individual students. However, retaining 
this component of uncertainty requires that additional analytical procedures be 
used to estimate students’ proficiencies.
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If the θ values were observed for all sampled students, the statistic  

  
t −T( ) U1 2 would follow a t-distribution with d degrees of freedom. Then the 

incomplete-data statistic (T – T̂ ) / [Var (T̂ )] 1/2 is approximately t-distributed, 
with degrees of freedom (Johnson & Rust, 1993) given by:

(10) 

  

ν =
1

fM
2

M −1
+

1− fM( ) 2

d

where d is the degrees of freedom for the complete-data statistic, and fM is the 
proportion of total variance due to not observing the values:

(11) 

   

fM =
1+M−1( ) BM

Var Tµ( )

When BM is small relative to  U , the reference distribution for the 
incomplete-data statistic differs little from the reference distribution for the 
corresponding complete-data statistic. If, in addition, d is large, the normal 
approximation can be used instead of the t-distribution.

For a k-dimensional function T, such as the k coefficients in a multiple 
regression analysis, each U and  U  is a covariance matrix, and BM is an average 
of squares and cross-products rather than simply an average of squares. In this 
case, the quantity (T – T̂ ) [Var–1 ( ̂T )(T – T̂ )'  is approximately F-distributed with 
degrees of freedom equal to k and ν, with ν defined as above but with a matrix 
generalization of fM:

(12) 
   
fM = 1+M−1( ) Trace BMVar−1 Tµ( )⎡

⎣⎢
⎤
⎦⎥

k

For the same reason that the normal distribution can approximate the 
t-distribution, a chi-square distribution with k degrees of freedom can be 
used in place of the F-distribution for evaluating the significance of the above 
quantity (T – T̂ ) [Var–1 ( ̂T )(T – T̂ )' .

Statistics , the estimates of proficiency conditional on responses to 
cognitive items and background variables, are consistent estimates of the 
corresponding population values T, as long as background variables are included 
in the conditioning variables. The consequences of violating this restriction are 
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described by Beaton & Johnson (1990), Mislevy (1991), and Mislevy & Sheehan 
(1987). To avoid such biases, the TIMSS and PIRLS analyses include nearly all 
student background variables, in the form of principal components, as well 
as the class means to preserve between-class differences – the between- and 
within-classroom variance structure essential for hierarchical modeling.
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